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Method for determining the shear stress in cylindrical systems

Owen G. Jepps* and Suresh K. Bhatia†

Department of Chemical Engineering, University of Queensland, Brisbane Qld 4076, Australia
~Received 18 December 2002; published 25 April 2003!

We develop a method for determining the elements of the pressure tensor at a radiusr in a cylindrically
symmetric system, analogous to the so-called ‘‘method of planes’’ used in planar systems@B. D. Todd, Denis
J. Evans, and Peter J. Daivis, Phys. Rev. E52, 1627~1995!#. We demonstrate its application in determining the
radial shear stress dependence during molecular dynamics simulations of the forced flow of methane in
cylindrical silica mesopores. Such expressions are useful for the examination of constitutive relations in the
context of transport in confined systems.
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I. INTRODUCTION

The method of planes@1# has been widely used to evalu
ate elements of the pressure tensor at a given plane du
molecular dynamics simulations. Elements of the press
tensor are obtained from a frequency-space expression
the Navier-Stokes momentum conservation equation, and
derivation relies on the uniform behavior of the system
two of the three Cartesian directions describing the syst
Consequently, it is well suited to determining the shear str
Pxy(x), as a function of positionx across a slit pore, in
nonequilibrium molecular dynamics~NEMD! simulations. In
combination with a knowledge of the streaming velocity p
file u(x) across the pore, this method provides a means
determining the local shear viscosityh(x) in accordance
with the usual definition for Newtonian fluids,Pxy5
2h(]u/]x). Combined with other methods, it can provide
useful tool in examining the applicability of this relation
confined fluids.

In the NEMD simulation of forced flow in cylindrica
pores, we anticipate an analogous uniformity in the syst
but now in the angular and axial degrees of freedom. In s
systems, it is the radial dependence of the shear stress
one wishes to determine. In Sec. II, we develop a met
analogous to the method of planes, where the mean s
stress at a particular radius is determined. For convenie
we call this the method of cylinders. In Sec. III, we test th
method, and compare it with an alternative method based
the direct integration of the momentum conservation eq
tion.

II. DERIVATION

The starting point for our derivation is the conservati
equation for momentum,

]J~r ,t !

]t
52“•@P~r ,t !1r~r ,t !u~r ,t !u~r ,t !#, ~1!
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whereJ represents the momentum density,P represents the
pressure tensor,r represents the fluid mass density, andu
represents the streaming velocity, each at a positionr in our
system at timet. The momentum densityJ can be written as

J~r ,t !5(
i

mivi~ t !d„r2r i~ t !…,

wheremi is the mass of thei th particle,vi its velocity, andr i
its position.

In Ref. @1#, the authors considered transport between p
nar interfaces, and solved Eq.~1! in frequency space, assum
ing uniformity in directions parallel to the interfaces ov
time. Let us instead consider the case where the syste
confined by a cylindrical interface, that is, by the surfacer
5R for the set of cylindrical coordinates (r ,f,z). In our
case, the cylindrical symmetry implies uniformity in thez
andf directions. In cases of such symmetry, the frequen
space is studied using the Hankel transform, rather than
Fourier transform, defined for an arbitrary functiong(r ) as
@2#

G~q!5E
0

`

g~r !J0~qr !rdr , ~2!

whereJ0 is the zeroth-order Bessel function

J0~z!5
1

2pE0

2p

e2 iz cosfdf.

It is also convenient to introduce the first-order Bessel fu
tion J1, which obeys the identity@3#

J1~z!52J08~z!. ~3!

The condition of uniformity allows us to take averages ov
f, z, andt. Strictly, one should leave this averaging until th
end of the derivation. However, one can greatly simplify t
algebra without affecting the result by performing the spa
averages immediately, leaving the time averaging to the e
For each componentJa of the vectorJ, aP$r ,f,z%, we
define
©2003 The American Physical Society06-1
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Ja~r ,t !5
1

2pZEZ
E

0

2p

Ja~r ,t !dfdz,

whereZ is the range of thez coordinate. We define analogou
averages ua(r ,t), r(r ,t) and Pa(r ,t)5@Par(r ,t),
Paf(r ,t),Paz(r ,t)#—now all functions of r rather than
r—and note that the vector equation, Eq.~1!, becomes three
scalar equations of the form

]Ja~r ,t !

]t
52“•@Pa~r ,t !1r~r ,t !ua~r ,t !u~r ,t !#. ~4!

In order to obtain an expression for the pressure tensor,
next step is to determine the Hankel transform of both si
of Eq. ~4!. In cylindrical coordinates, the momentum dens
component can be written as

Ja~r ,t !5
1

2pZEZ
E

0

2p

(
i

mivai~ t !

3
d„r 2r i~ t !…d„f2f i~ t !…d„z2zi~ t !…

r
dfdz

5
1

2pZ (
i

mivai~ t !
d„r 2r i~ t !…

r
,

so that its Hankel transform is given by

Ja~q,t !5
1

2pZ (
i

mivai~ t !J0„qri~ t !…,

with time derivative

]Ja~q,t !

]t
5

1

2pZ (
i

@Fai~ t !J0„qri~ t !…

2qmiva i~ t !v ri ~ t !J1„qri~ t !…#.

This gives us an expression for the Hankel transform of
left side of Eq.~4!. In order to calculate the Hankel transfor
of the right side of Eq.~4!, we consider a~pseudo! vector
field, X(r )5@Xr(r ),Xf(r ),Xz(r )#. Its divergence is given
by

¹•X~r !5
1

r F ]

]r
@rXr~r !#1

]

]f
Xf~r !1

]

]z
@rXz~r !#G

5
1

r

]

]r
@rXr~r !#.

Through integration by parts, it is straightforward to sho
that the Hankel transformation of this divergence is

E
0

`1

r

]

]r
@rXr~r !#J0~qr !rdr 5qE

0

`

Xr~r !J1~qr !rdr .

Substituting X(r )5Pa(r ,t)1r(r ,t)ua(r ,t)u(r ,t) gives us
the Hankel transform of the right side of Eq.~4!. Having
found expressions for the Hankel transform of both sides
Eq. ~4!, we equate them to obtain
04120
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1

2pZ (
i

@Fa i~ t !J0„qri~ t !…2qmiva i~ t !v ri ~ t !J1„qri~ t !…#

5qE
0

`

@Par~r ,t !1r~r ,t !ua~r ,t !ur~r ,t !#J1~qr !rdr .

~5!

We recognize on both sides of Eq.~5! contributions from two
types of momentum transfer—a configurational contribut
corresponding to transfer via forces, and a kinetic contri
tion corresponding to transfer via convection. We theref
separate and equate the two contributions as follows:

1

2pZ (
i

Fa i~ t !J0„qri~ t !…52qE
0

`

Par
U ~r ,t !J1~qr !rdr ,

~6!

q

2pZ (
i

miva i~ t !v ri ~ t !J1~qri~ t !!

5qE
0

`

@Par
K ~r ,t !1r~r ,t !ua~r ,t !ur~r ,t !#J1~qr !rdr ,

~7!

wherePU and PK correspond to the configurational and k
netic parts of the pressure tensor, respectively, such thP
5PU1PK.

We now solve for the elements of the pressure ten
beginning withPr

U . Multiplying both sides of Eq.~6! by
J1(qr8) and integrating with respect toq leads to

1

2pZ (
i

Fa i~ t !E
0

`

J0„qri~ t !…J1~qr8!dq

52E
0

`

Par
U ~r ,t !F E

0

`

qrJ1~qr !J1~qr8!dqGdr.

Using the identities@3,4#

E
0

`

qr8J1~qr8!J1~qr !dq5E
0

`

qrJ0~qr !J0~qr8!5d~r 82r !,

E
0

`

J1~qr8!J0~qr !dq5
1

2r 8
@sgn~r 82r !11#,

where sgn(x) is the usual signum function, and noting th
since theFa i(t) represent internal forces only, they sum
zero, we obtain

Par
U ~r ,t !5

21

4prZ (
i

Fa i~ t !sgn„r 2r i~ t !…

5
1

2A~r ! (
i

Fa i~ t !sgn„r i~ t !2r …,
6-2
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whereA(r )52prZ represents the surface area of the cyl
der of radiusr. Finally, we average over time, assuming
steady-state flow, to obtain

Par
U ~r !5

1

2A~r !(i
Fa i~ t !sgn„r 2r i~ t !…, ~8!

wherea(t) represents the time average ofa(t). In analogy
with the result in Ref.@1#, only those forces acting throug
the surface of the cylinder of radiusr contribute toPar

U (r ).
Let us now consider the kinetic contribution to the pre

sure tensor,Pr
K . As in the configurational case, we multip

both sides of Eq.~7! by J1(qr8) and integrate with respect t
q to obtain

Par
K ~r ,t !1r~r ,t !ua~r ,t !ur~r ,t !

5
1

2prZ (
i

miva i~ t !v ri ~ t !d„r i~ t !2r ….

Finally, we average over time, and rearrange to obtain
expression

Par
K ~r !5

1

A~r !(i
miva i8 ~ t !v ri8 ~ t !d„r i~ t !2r …, ~9!

wherevi8 is the peculiar velocity of particlei, vi85vi2d(r
2r i(t))u(r ,t). Note that the expression being averaged
the right side of Eq.~9! is not instantaneously equal t
Par

K (r ,t), but yields the same average over microscopica
large time scales. In analogy with the result in Ref.@1#, only
particles passing through the surface of the cylinder of rad
r contribute toPar

K (r ).

III. COMPUTER SIMULATION

In order to test these expressions for the pressure ten
we consider the case of forced flow along a cylindrical m
sopore. The simulations model the flow of Lennard-Jo
~LJ! methane in a silica pore of radius 1.919 nm~approxi-
mately 5sCH4

). The wall is also modeled using LJ sites wi
fitted parameters, and the Lorentz-Berthelot rules are use
determine solid-fluid LJ interaction parameters. In additi
particles closer to the wall than the solid-fluid interacti
potential minimum are diffusely scattered in the plane t
gential to the pore wall, at the point where the radial veloc
of the methane molecule is zero. This process randomly
distributes the particles’ momentum in this plane, thus affe
ing the axial momentum, but not the radial momentum.
refer the reader to Ref@5# for further simulation details.

Simulations were performed over average fluid num
densities ranging fromn51.9 nm23 to n511.1 nm23. For
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the lower densities, an external force field ofFz52.66
310214 N per molecule was applied in thez direction,
whereas at higher densities a field ofFz55.32310215 N per
molecule was applied. All simulations were performed at 1
K. In each simulation the shear stressPzr(r )5Pzr

U (r )
1Pzr

K (r ) was calculated from the method of cylinders e
pressions Eqs.~8! and ~9!, using 500 cylinders with equally
spaced radii across the pore. The calculation ofPzr

U (r ) is
relatively straightforward, as a pair interaction only contri
utes wherer lies between the radial coordinates of the inte
acting particles. The calculation ofPzr

K (r ) is less straightfor-
ward. Suppose a particle~labeledj ) crosses the cylinder atr
at timetX in the time interval@ t,t1Dt#. The contribution to
Pzr

K (r ) from this event would be

1

A~r !DtEt

t1Dt

mjvz j8 ~ t !v r j8 ~ t !d„r j~ t !2r …dt

5
1

A~r !DtEt

t1Dt

mjvz j8 ~ t !d~ tX2t ! dt5
mjvz j8 ~ tX!

A~r !Dt
.

Thus contributions toPzr
K (r ) consist of the axial peculia

momentum of particles as they cross the cylinder atr.
In order to verify the results of this method, a seco

means of determining the shear stress was employed.
momentum conservation equation, Eq.~1!, for forced flow
leads to the following expression:

1

r

]„rPzr~r !…

]r
5n~r !Fz ,

for the steady state, wheren(r ) represents the number den
sity at radiusr. Thus we have an alternative expression
the shear stress,

Pzr~r !5
Fz

r E0

r

r 8n~r 8!dr8. ~10!

In Fig. 1, we compare the values for the shear stress
tained using the method of cylinders~labeled MOC! with the
values obtained by integrating the momentum conserva
equation~labeled IMC!, for the system with average numbe
densityn51.9 nm23. We note that the two results obtaine
using these two methods agree to within the predicted er
which is smaller than the size of the symbols used in
figure, until a critical radiusR0 is reached.R0 corresponds to
the minimum in the solid-fluid interaction potential. This di
crepancy is due to the diffuse boundary conditions that o
occur for particles atr .R0. The values ofPzr(r ) obtained
from the IMC method report the shear stress required
maintain the particles contained within this volume at
6-3
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steady state, that is, the shear stress required to balanc
external force fieldFz . Thus, IMC values give thetotal
shear stress experienced by particles at a given radius.
ever, the values ofPzr(r ) obtained from the MOC reflec
fluid-fluid momentum exchange only, and hence give
fluid contribution to the shear stress experienced by parti
at a given radius. Consequently, the difference between
two values represents the shear stress exerted by the
wall at a given radius. This momentum exchange betw
solid and fluid, arising from the diffuse boundary condition
represents velocity slip at the wall. Such slip can be rep
sented by the introduction of a frictional boundary conditi
to a hydrodynamic model of the formkr(r 0)u(r 0)
5Pzr(r 0) wherer 5r 0 represents the boundary of the mod
@5–7#. In Ref. @5#, r 0 is the location of the solid-fluid poten
tial minimum.

We observe similar behavior at all tested densities. Fig
2 shows the results obtained for a system with mean num
density ofn511.0 nm23—the densest system examined
this work.

FIG. 1. Shear stress calculated using the method of cylind
~MOC!—Eqs.~8! and ~9!—and integration of the momentum con
servation equation~IMC!—Eq. ~10!—for the forced flow of meth-
ane in a silica mesopore,n51.9 nm23.
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IV. CONCLUSION

We have derived an expression for determining the ra
dependence of elements of the pressure tensor in sys
with cylindrical symmetry. This method of cylinders i
analogous to a previously derived approach used in syst
with planar symmetry. We have successfully tested this
pression in examining the radial dependence of the sh
stress, through a comparison with an alternative expres
based on integrating the momentum conservation equa
~IMC method!. However, where the method of cylinde
measures only that part of the shear stress exerted by o
particles, the IMC method measures contributions from
ternal sources as well. We anticipate that the method of
inders will be useful in the study and development of loc
ized expressions for fluid shear viscosity, for confined flui

The physical interpretation of the resultant expressions
the method of planes and the method of cylinders are sim
and suggestive of a general principle for other geomet
in which the frequency-space analysis is more difficult
develop.

rs FIG. 2. Shear stress calculated using the method of cylind
~MOC!—Eqs.~8! and ~9!—and integration of the momentum con
servation equation~IMC!—Eq. ~10!—for the forced flow of meth-
ane in a silica mesopore,n511.0 nm23.
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