PHYSICAL REVIEW E 67, 041206 (2003
Method for determining the shear stress in cylindrical systems
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We develop a method for determining the elements of the pressure tensor at arradiicylindrically
symmetric system, analogous to the so-called “method of planes” used in planar syBtefsTodd, Denis
J. Evans, and Peter J. Daivis, Phys. Re%2£1627(1995]. We demonstrate its application in determining the
radial shear stress dependence during molecular dynamics simulations of the forced flow of methane in
cylindrical silica mesopores. Such expressions are useful for the examination of constitutive relations in the
context of transport in confined systems.
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I. INTRODUCTION whereJ represents the momentum densRyrepresents the
pressure tensop represents the fluid mass density, and
The method of planesl] has been widely used to evalu- represents the streaming velocity, each at a positionour
ate elements of the pressure tensor at a given plane durirgystem at timé¢. The momentum density can be written as
molecular dynamics simulations. Elements of the pressure
tensor are obtained from a frequency-space expression for
the Navier-Stokes momentum conservation equation, and the IrH= E. m;vi(1) 8(r—ri(t)),
derivation relies on the uniform behavior of the system in
two of the three Cartesian directions describing the SVStemNheremi is the mass of thith particle,v; its velocity, and;
Consequently, it is well suited to determining the shear stresgg position.
Pxy(X), as a function of positiorx across a slit pore, in In Ref.[1], the authors considered transport between pla-
nonequmprlum. molecular dynamig¢SlEMD) S|mulat|on§. N har interfaces, and solved Ed) in frequency space, assum-
combination with a knowledge of the streaming velocity pro-ing yniformity in directions parallel to the interfaces over
file u(x) across the pore, this method provides a means Ofme. Let us instead consider the case where the system is
determining the local shear viscosity(x) in accordance confined by a cylindrical interface, that is, by the surface
with the usual definition for Newtonian fluidsP,,=  —R for the set of cylindrical coordinates ,z). In our
— 7(du/dx). Combined with other methods, it can provide a case, the cylindrical symmetry implies uniformity in the
useful tool in examining the applicability of this relation to 44 ¢ directions. In cases of such symmetry, the frequency
confined fluids. space is studied using the Hankel transform, rather than the

In the NEMD simulation of forced flow in cylindrical Fqrier transform, defined for an arbitrary functigr) as
pores, we anticipate an analogous uniformity in the systenl%z]
c

but now in the angular and axial degrees of freedom. In su
systems, it is the radial dependence of the shear stress that w
one wishes to determine. In Sec. Il, we develop a method G(q)=f g(r)Jo(gr)rdr, (2)
analogous to the method of planes, where the mean shear 0

stress at a particular radius is determined. For convenience, ) ,
we call this the method of cylinders. In Sec. Iil, we test this WhereJo is the zeroth-order Bessel function
method, and compare it with an alternative method based on

the direct integration of the momentum conservation equa- J _ i T iz cosd
. o(2) € @.
tion. 27 )9
It is also convenient to introduce the first-order Bessel func-
Il. DERIVATION tion J;, which obeys the identit{3]
The starting point for our derivation is the conservation ,
equation for momentum, J1(2)=—Jo(2). ©)
23(r.0) The condition of uniformity allows us to take averages over
L VP )+ p(r,Du(r.Hu(r. )], 1 ¢, z, andt. Strl_ctlyz one should leave this averaging un_t|l the
at [P +p(r.bu(r,Hulr.b)] @ end of the derivation. However, one can greatly simplify the
algebra without affecting the result by performing the spatial
averages immediately, leaving the time averaging to the end.
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1 2m 1
300= 5 | Ta.r.0dsdz 5z 3 [F(03n(0) - amo, (0 (03, ()]
whereZ is the range of the coordinate. We define analogous [
averages U,(r,t), p(r,t) and  P.(r,t)=[P,(r,1), —QL [Par(r,t) +p(r,t)u,(r,tyu,(r,t)] I (qr)rdr.
Pao(r,1),P (r,t)]—now all functions ofr rather than
r—and note that the vector equation, Efj), becomes three )

scalar equations of the form ) ) o
We recognize on both sides of E&) contributions from two
dd,(r,1) types of momentum transfer—a configurational contribution
i~ VIP(rhFp(rhua(r,u(r,t)]. (4 corresponding to transfer via forces, and a kinetic contribu-
tion corresponding to transfer via convection. We therefore
In order to obtain an expression for the pressure tensor, ogeparate and equate the two contributions as follows:

next step is to determine the Hankel transform of both sides

of Eq. (4). In cylindrical coordinates, the momentum density 1
component can be written as 2 Fai(t)Jo(ari(t)= —QJ o (r,H)Jy(gr)rdr,
2 (6)
L= 2’7TZJ' Z miv(t .
8 —ri(1) (b~ ()3 7(1) Zmz 2 MUaOuAAAn(m)
X ; dedz
S(r—r. (t)) =QL [P&(r,t)+p(r,Hu,(r,u (r,t) 13, (gr)rdr,
= m . M ,i(t)
| (7

so that its Hankel transform is given b . . .
9 y wherePY and PX correspond to the configurational and ki-

1 netic parts of the pressure tensor, respectively, suchRhat
() =55 2 mui(1)3o(@ri(t)), =PY+PK,
T i
We now solve for the elements of the pressure tensor,
with time derivative beginning withPY . Multiplying both sides of Eq(6) by
Ji(gr’) and integrating with respect wpleads to
dd,(a,1)
T 2mz 2 LFa(D3o@ni()

2’7TZ z Fal(t f O(qr (t))Jl(qr )dq
—gm 4i(Hv (1) I (qri(t)].

This gives us an expression for the Hankel transform of the = —f Pgr(r,t)[f qrJi(qr)Ji(qr’)dq|dr
left side of Eq.(4). In order to calculate the Hankel transform 0 0

of the right side of Eq(4), we consider apseud9 vector

field, X(r)=[X,(r),X,(r),X,(r)]. Its divergence is given Using the identitie$3,4]

by

f:qr’Jl(qr’)Jl(qr)dF fowquo(qr)Jo(qr’F5(r’—r),

1|0
VoX()= 7S] 75 K1)+ [rxz<r>]}

d¢
14 . I |
:Fﬁ[rx (0] fo Ju(ar')Jo(qr)dg=57[sgr(r' —r)+1]

Through integration by parts, it is straightforward to show

that the Hankel transformation of this divergence is where sgrf) is the usual signum function, and noting that

since theF ,(t) represent internal forces only, they sum to
zero, we obtain

<1 4 e
| 2 Ztoxnnganrdr=a| “x(naanrar.

-1
U = . —_— .
Substituting X(r)=P,(r,t) + p(r,t)u,(r,t)u(r,t) gives us Par(r,t) 47 EI Fai(t)sgnr—r(t))

the Hankel transform of the right side of E@). Having 1
found expressions for the Hankel transform of both sides of _ E (t)sar(r (t)—r
Eq. (4), we equate them to obtain 2A(r 2. Fa(t)sgrry() =),
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whereA(r)=2nrZ represents the surface area of the cylin-the lower densities, an external force field Bf=2.66
der of radiusr. Finally, we average over time, assuming ax10 '* N per molecule was applied in the direction,
steady-state flow, to obtain whereas at higher densities a fieldFof=5.32x 10" 1° N per
molecule was applied. All simulations were performed at 150
1 K. In each simulation the shear stre$y, (r)= P‘ZJ,(r)
U oy ) . +PZK,(r) was calculated from the method of cylinders ex-
Par(r)= 2A(r)§i: Fai(t)sgrr =ri(1)), ® pressions Eq98) and(9), using 500 cylinders with equally
spaced radii across the pore. The calcuIatiorPtﬁ(r) is
N ) relatively straightforward, as a pair interaction only contrib-
wherea(t) represents the time averageafft). In analogy tes where lies between the radial coordinates of the inter-
with the result in Ref[1], only those forces actlngUthrough acting particles. The calculation &.(r) is less straightfor-
the surface of the cylinder of radiuscontribute toP ,,(r). ward. Suppose a particléabeledj) crosses the cylinder at

Let us now consider the kinetic contribution to the press-4; timet, in the time interva[t,t+At]. The contribution to
sure tensorPf. As in the configurational case, we multiply PK(r) from this event would be
zr

both sides of Eq(7) by J;(gr’) and integrate with respect to

g to obtain
1 t+At ) )
PX (1,1 + p(r, DU, DU (r, ) ADAL),  Mvaog (D3 H-ndt
_ 1 B B 1 t+At ) B mjvéj(tx)
- 2mrZ EI mivai(t)vri(t)5(ri(t) r)' - (r)AtJ; mJUZ](t)(S(tX_t)dt_ A(I’)At .

Finally, we average over time, and rearrange to obiain th%’hus contributions toPX (r) consist of the axial peculiar

1 zr
expression momentum of particles as they cross the cylinder. at
In order to verify the results of this method, a second
1 means of determining the shear stress was employed. The
PX.(r)= WE miv L (1o} (1) 8(ri(t)—r), (9) momentum conservation equation, Ed), for forced flow

[ leads to the following expression:

wherev; is the peculiar velocity of particle v{ =v,— (r

—r;())u(r,t). Note that the expression being averaged on 1 9(rP(r)) —n(r)F

the right side of Eqg.(9) is not instantaneously equal to r ar z

PX.(r,1), but yields the same average over microscopically

large time scales. In analogy with the result in Réf, only

particles passing through the surface of the cylinder of radiu§or the steady state, whergr) represents the number den-

r contribute toP, (r). sity at radiusr. Thus we have an alternative expression for
the shear stress,

IIl. COMPUTER SIMULATION

F r
In order to test these expressions for the pressure tensor, P,(r)= Tzf r'n(r’)dr’. (10
we consider the case of forced flow along a cylindrical me- 0
sopore. The simulations model the flow of Lennard-Jones

(LJ) methane in a silica pore of radius 1.919 rapproxi- In Fig. 1, we compare the values for the shear stress ob-
mately Socy,). The wall is also modeled using LJ sites with tained using the method of cylindefiabeled MOG with the
fitted parameters, and the Lorentz-Berthelot rules are used tmlues obtained by integrating the momentum conservation
determine solid-fluid LJ interaction parameters. In addition,equation(labeled IMQ, for the system with average number
particles closer to the wall than the solid-fluid interactiondensityn=1.9 nm 3. We note that the two results obtained
potential minimum are diffusely scattered in the plane tan-using these two methods agree to within the predicted error,
gential to the pore wall, at the point where the radial velocitywhich is smaller than the size of the symbols used in the
of the methane molecule is zero. This process randomly refigure, until a critical radiu®, is reachedR, corresponds to
distributes the particles’ momentum in this plane, thus affectthe minimum in the solid-fluid interaction potential. This dis-
ing the axial momentum, but not the radial momentum. Wecrepancy is due to the diffuse boundary conditions that only
refer the reader to Réb] for further simulation details. occur for particles at>R,. The values ofP,,(r) obtained
Simulations were performed over average fluid numbefrom the IMC method report the shear stress required to
densities ranging froom=1.9 nm 3 to n=11.1 nm 3. For  maintain the particles contained within this volume at a
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FIG. 1. Shear stress calculated using the method of cylinders g 2. Shear stress calculated using the method of cylinders

(MOC).—Eqs.(S? and (9)—and integration of the momentum con- (MOC)—Egs. (8) and (99—and integration of the momentum con-
servation equatioliIMC)—Eq. (10)—for the forced flow of meth- a1y ation equatiofiMC)—Eq. (10)—for the forced flow of meth-

H ili — 3 . . _
ane in a silica mesopore=1.9 nm>. ane in a silica mesopore=11.0 nm 3.

steady state, that is, the shear stress required to balance the IV. CONCLUSION
external force fieldF,. Thus, IMC values give theotal
shear stress experienced by particles at a given radius. Hogg

ever, the values oP,(r) obtained from the MOC reflect ity cylindrical symmetry. This method of cylinders is
fluid-fluid momentum exchange only, and hence give theyn,6q0us to a previously derived approach used in systems
fluid contribution to the shear stress experienced by particleg;ity, planar symmetry. We have successfully tested this ex-
at a given radius. Consequently, the difference between thgression in examining the radial dependence of the shear
two values represents the shear stress exerted by the pa§gess, through a comparison with an alternative expression
wall at a given radius. This momentum exchange betweehased on integrating the momentum conservation equation
solid and fluid, arising from the diffuse boundary conditions,(IMC method. However, where the method of cylinders
represents velocity slip at the wall. Such slip can be repremeasures only that part of the shear stress exerted by other
sented by the introduction of a frictional boundary conditionparticles, the IMC method measures contributions from ex-
to a hydrodynamic model of the formkp(rg)u(rg) ternal sources as well. We anticipate that the method of cyl-
=P,(ro) wherer=r, represents the boundary of the modelinders will be useful in the study and development of local-
[5-7]. In Ref.[5], rq is the location of the solid-fluid poten- ized expressions for fluid shear viscosity, for confined fluids.
tial minimum. The physical interpretation of the resultant expressions for

We observe similar behavior at all tested densities. Figur¢he method of planes and the method of cylinders are similar,
2 shows the results obtained for a system with mean numbemd suggestive of a general principle for other geometries
density ofn=11.0 nm 3>—the densest system examined inin which the frequency-space analysis is more difficult to
this work. develop.

We have derived an expression for determining the radial
pendence of elements of the pressure tensor in systems
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